MATHEMATICAL UNDERSTANDING FOR TEACHING SECONDARY MATHEMATICS WITH CAS

M. Kathleen Heid, The Pennsylvania State University
ICME-13
Hamburg, Germany
July 26, 2016
CENTERS FOR LEARNING AND TEACHING (CLT)
Funded by the National Science Foundation*

Mathematics Education Collaboration
Penn State University
University of Georgia

*This material is based on work partially supported by the National Science Foundation under Award Number 0426253 and Award Number 0227586. Any opinions, findings, and conclusions or recommendations expressed in this presentation are those of the authors and do not necessarily reflect the views of the National Science Foundation.
Goal: produce a framework for secondary teachers’ understanding of mathematics

- Base the framework on actual classroom interactions
- Elaborate mathematical understanding for teaching at the secondary level
Start with the mathematics classroom. Identify events that are mathematical opportunities

Components:

- Prompt---the classroom event
- Mathematical Foci ---what mathematics could the teacher productively use?
- Capsule statement of each Mathematical Focus
- Commentary
- Post-Commentary
Major Faculty involved:

Glen Blume
Kathy Heid
Jeremy Kilpatrick
Jim Wilson
Pat Wilson
Rose Mary Zbiek

Others (now at various institutions):

Bob Allen
James Banyas
Stephen Bismarck
Tracy Boone
Shawn Broderick
Tenille Cannon
AnnaMarie Conner
Sarah Donaldson
Kanita DuCloux
Kelly Edenfield
Bradford Findell
Ryan Fox
Christa Fratto
Brian Gleason
Eric Gold
Maureen Grady
Amy Hackenberg
Dennis Hembree
Erik Jacobson
Heather Johnson
Kim Johnson
Shiv Karunakaran
Donna Kinol
Lana Konnova
Jana Lunt
Evan McClintock
Ken Montgomery

Eileen Murray
Pawel Nazarewicz
Sharon K. O’Kelley
Susan Peters
Shari Reed
Ginger Rhodes
Jeanne Shimizu
Laura Singletery
Patrick Sullivan
Erik Tillema
Steps in developing the framework

- **Identify mathematical opportunities** from observing secondary classrooms.
- **Determine and describe mathematical foci** -- mathematics a teacher could productively use in each situation.
- Based on the mathematical foci, **determine perspectives** that capture the mathematics teachers could use in these situations.
- **Develop the subcategories** within each perspective.
- **Solicit feedback** from mathematicians, mathematics educators, and secondary mathematics teachers.
FRAMEWORK FOR MATHEMATICAL UNDERSTANDING FOR SECONDARY TEACHING

A synthesis of mathematical elaborations from more than 50 Situations

MP Mathematical Proficiency
MA Mathematical Activity
MC Mathematical Context
FRAMEWORK FOR MATHEMATICAL UNDERSTANDING FOR SECONDARY TEACHING

Mathematical Proficiency
- Conceptual Understanding
- Procedural Fluency
- Strategic Competence
- Adaptive Reasoning
- Productive Disposition
- Historical & Cultural Knowledge

Mathematical Activity
- Mathematical Noticing
- Mathematical Reasoning
- Mathematical Creating

Mathematical Context of Teaching
- Probe Mathematical Ideas
- Understand Students’ Mathematical Thinking
- Know and Use Curriculum
- Assess Mathematical Knowledge of Learners
- Reflect on the Mathematics of Practice
A student was asked to produce a function that had certain given characteristics. One of those characteristics was that the function should be undefined for values less than 5. Another characteristic was that the range of the function should contain only non-negative values. In the process, the student defined \(f(x) = \sqrt{x - 5} \) and then evaluated \(f(-10) \) using his CAS calculator. The calculator displayed a result of 3.872983346. He looked at the calculator screen and whispered, “How can that be?”
MATHEMATICAL FOCUS 1

Complex numbers can be represented as points on the complex plane.
The absolute value of a complex number, \(z = x + yi \), is the number’s distance from the origin. This distance is called the modulus or norm and is computed by \(|z| = \sqrt{x^2 + y^2} \).
MATHEMATICAL FOCUS 3

In the complex plane, there are infinitely many solutions to any linear absolute value equation other than $|z| = 0$, and the graph of these solutions forms a circle.

\[
|x| = 3 \\
\Rightarrow |a + bi| = 3 \\
\Rightarrow \sqrt{a^2 + b^2} = 3 \\
\Rightarrow a^2 + b^2 = 9
\]
In the complex plane, there are infinitely many solutions to any linear absolute value equation other than $|z| = 0$, and the graph of these solutions forms a circle.

Real number solutions:

$|3x + 1| = 5 \Rightarrow x = \frac{4}{3} \text{ or } x = -2$

Complex number solutions:

$|3x + 1| = 5$

$\Rightarrow |3(a + bi) + 1| = 5$

$\Rightarrow |3a + 1 + 3bi| = 5$

$\Rightarrow \sqrt{(3a + 1)^2 + 3b^2} = 5$

$\Rightarrow \sqrt{9a^2 + 6a + 1 + 9b^2} = 5$

$\Rightarrow \cdots$

$\Rightarrow \left(a + \frac{1}{3} \right)^2 + b^2 = \left(\frac{5}{3} \right)^2$
MATHEMATICAL FOCUS 4

A composite function with the same domain and codomain may be composed of functions with different domains and codomains.
Knowing that a Computer Algebra System (CAS) had commands such as \texttt{cfactor} and \texttt{csolve} to factor complex number expressions and solve complex number equations, a teacher was curious about what would happen if she entered \sqrt{i}.

The result was $\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$.

She wondered why a CAS would give a result such as that.

Johnson, Kararunakaran, Fox, McClintock
Solving the equation $x^2 = i$ where $c = a + b \, i$ and verifying the solution to the equation provides a representation of the imaginary number i.
Powers of i can be related to rotations involving the unit circle on the complex plane.
MATHEMATICAL FOCUS 3

By using Euler’s formula, the connection between the trigonometric representation of any complex number and the square root of the imaginary number i, is made more explicit.
The value of the square root of the imaginary number i can be determined by related this value to cyclic groups.
What are some other examples of prompts arising in the context of CAS use?