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Figure 1.3 Stepwise refinement of hypotheses through a systematic search for
counterexamples.

checked). Nevertheless, it is very useful for the experimenting mathematician
to employ a similar strategy in the investigation of mathematical objects. An
initial investigation of concrete examples of the object in question will lead
to one or more hypotheses about the general properties of the object. Once
a hypothesis has been established, the experimenting mathematician should
investigate its theoretical implications carefully and use these to make predic-
tions about the behavior of the structure in question. The next step is to design
experiments to check whether the structure has these predicted properties or
not. If not, then the hypothesis has been proved false by the counterexample.
A series of confirmations of the predictions of the hypothesis is naturally not
sufficient to establish the hypothesis as a mathematical result, but it is often
possible to extract useful knowledge from the process which may in turn sup-
port the formulation of a proof. At the very least, having a clearly defined
conjecture that the investigator has reason to believe in makes it much easier to
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Experimental mathematics
The systematic investigation of concrete examples of a
mathematical structure in the search for conjectures about
its properties (using computers).

Typical output from an experimental investigation:

• A counterexample

• A reference to the mathematical literature

• A “hint” for a proof

• A conjecture
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Conjecture [L. Euler 1769]

xn
1 ` xn

2 `¨¨ ¨` xn
m “ yn

can only have solutions x1,x2, . . . ,xm,y P N when n ěm
for m ě 2; i.e., for a sum of nth powers to itself be an nth
power it must have either only one or at least n summands.

Euler had essentially proved that

x3
1 ` x3

2 “ y3

did not have any such solutions, cf. Fermat’s last theorem.
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i966] COUNTEREXAMPLE TO EULER'S CONJECTURE 1079 

2. F . P. Ramsey, On a problem of formal logic, Proc. London Math. Soc. (2) 
30 (1930), 264-286. 

DARTMOUTH COLLEGE 

COUNTEREXAMPLE TO EULER'S CONJECTURE 
ON SUMS OF LIKE POWERS 

BY L. J. LANDER AND T. R. PARKIN 

Communicated by J. D. Swift, June 27, 1966 

A direct search on the CDC 6600 yielded 

275 + 845 + HO5 + 1336 - 1445 

as the smallest instance in which four fifth powers sum to a fifth 
power. This is a counterexample to a conjecture by Euler [l] that at 
least n nth powers are required to sum to an nth power, n>2. 

REFERENCE 

1. L. E . Dickson, History of the theory of numbers, Vol. 2, Chelsea, New York, 
1952, p. 648. 
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Birch & Swinnerton-Dyer: Data for the elliptic curves
y2 “ x3´d2x at d “ 1, 5, 34,1254, 29274.
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Consider an elliptic curve

E : y2
“ x3

`ax`b , a,b P Z

with discriminant ∆“´16p4a3`27b2q ‰ 0. For every
prime p not dividing ∆, consider

Np “ 1`
ˇ

ˇt0ď x ,y ď p´1 | y2
” x3

`ax`b mod pu
ˇ

ˇ.

Birch and Swinnerton-Dyer got the idea that Np should be
related to the rank of E , and over a period of five years in
the late 1950’s and early 1960’s they computed

πEpXq “
ź

pďX ,p-∆

Np

p

for many different values of X for a number of elliptic
curves with known ranks, leading to the conjecture that

πEpXq Ñ C lnpXqrankpEq for X Ñ8

for some C that depends only on E .
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to one or more hypotheses about the general properties of the object. Once
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21
`1 “ 3 is a prime

22
`1 “ 5 is a prime

24
`1 “ 17 is a prime

28
`1 “ 257 is a prime

216
`1 “ 65537 is a prime

Lemma
If 2m`1 is a prime, then m “ 2k

Conjecture [P. de Fermat]

Every number Fm “ 22m
`1 is prime

Example [L. Euler 1732]
F5 “ 4294967297“ 641 ¨6700417
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Conjecture [C.F. Gauss, 1792–93]
With πpxq the number of primes less than x ,

πpxq «
ż x

2

du
lnu

“: Lipxq

The prime number theorem [J. Hadamard, P. de
la Vallée-Poussin 1896]

lim
xÑ8

πpxq
Lipxq

“ 1
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2.6 Pseudocode and stepwise refinement 41

Example 2.6.1 : Sieve of Eratosthenes. The Sieve of Eratosthenes is a sim-
ple algorithm for exhaustively finding the primes less than or equal to a given
upper bound N. Pseudocode for the sieve is given in Algorithm 2.1. /

Algorithm 2.1 Sieve of Eratosthenes
1: procedure Sieve(N)
2: Construct a list L = [2, . . . ,N]
3: Let p = 2
4: while p < N do
5: Remove ip from L for each integer i ≥ 2
6: Let p be the smallest element in L greater than p
7: end while
8: return L . L contains all primes smaller than N
9: end procedure

Algorithm 2.2 Stepwise refinement
1: identify the problem that you want to solve
2: write initial pseudocode for the program
3: while the pseudocode is not detailed enough to write the program do
4: modify and refine the pseudocode
5: end while
6: write the program

Stepwise refinement is the process of turning a loosely formulated idea for
a computer program into a detailed piece of pseudocode through steps con-
sisting of progressively more detailed pseudocode. When the pseudocode is
sufficiently refined, the programmer can start implementing it by writing the
actual program. Using the conventions of pseudocode described above, this
process can be described by Algorithm 2.2.

Example 2.6.2 : Winning strategy. Two players, A and B, agree on an n ∈ N
and proceed to play the following game: Starting with A, they take turns to
write either 0 or 1 as the next entry in a sequence. The looser is the player who
first writes a digit so that the last n digits form a sub-sequence that has already
occurred once. For n = 2, the game could proceed in the following manner:

00101.

Here, player B wins when 01 is written for the second time by player A.
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Question
What is

1.772453851?

Question
What is

1,2,5,12,32,94,289,910?
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